
Janche Sang
Cleveland State University, Cleveland, Ohio

Chan Kim
Glenn Research Center, Cleveland, Ohio

Isaac Lopez
U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio

Developing CORBA-Based Distributed
Scientific Applications From Legacy
Fortran Programs

NASA/TM—2000-209950

July 2000

ARL–MR–488
U.S. ARMY

RESEARCH LABORATORY

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

NASA/TM—2000-209950

July 2000

National Aeronautics and
Space Administration

Glenn Research Center

Prepared for the
Computational Aerosciences Workshop
sponsored by the High Performance Computing and Communications Program
Moffett Field, California, February 15–17, 2000

Janche Sang
Cleveland State University, Cleveland, Ohio

Chan Kim
Glenn Research Center, Cleveland, Ohio

Isaac Lopez
U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio

Developing CORBA-Based Distributed
Scientific Applications From Legacy
Fortran Programs

ARL–MR–488
U.S. ARMY

RESEARCH LABORATORY

Acknowledgments

The authors express their appreciation to management of the High Performance Computing and Communications
Program and to the NASA R&T Base Program for supporting NPSS.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076
Price Code: A03

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Price Code: A03

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

Available electronically at http://gltrs.grc.nasa.gov/GLTRS/

http://gltrs.grc.nasa.gov/GLTRS/

NASA/TM—2000-209950 1

DEVELOPING CORBA-BASED DISTRIBUTED SCIENTIFIC
APPLICATIONS FROM LEGACY FORTRAN PROGRAMS

Janche Sang

Cleveland State University
Cleveland, Ohio 44115

Chan M. Kim

National Aeronautics and Space Administration
 Glenn Research Center
Cleveland, Ohio 44135

Isaac Lopez

U.S. Army Research Laboratory
National Aeronautics and Space Administration

 Glenn Research Center
Cleveland, Ohio 44135

SUMMARY

 An efficient methodology is presented for integrating legacy applications written in Fortran into a distributed
object framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into Common
Object Request Broker Architecture (CORBA) objects are discussed. Fortran codes are modified as little as possible
as they are decomposed into modules and wrapped as objects. A new conversion tool takes the Fortran application
as input and generates the C/C++ header file and Interface Definition Language (IDL) file. In addition, the
performance of the client server computing is evaluated.

INTRODUCTION

 Recent progress in distributed object technology has enabled software applications to be developed and
deployed easily such that objects or components can work together across network boundaries, in different operating
systems, and in different languages. A distributed object is not necessarily a complete application but rather a reusa-
ble, self-contained piece of software that cooperates with other objects in a plug-and-play fashion via a well-defined
interface. The Common Object Request Broker Architecture (CORBA), a middleware standard defined by the
Object Management Group (OMG) (ref. 1), uses the Interface Definition Language (IDL) to specify such an inter-
face for transparent communication between distributed objects. Since IDL can be mapped to any programming
language, such as C++, Java (Sun Microsystems), or Smalltalk, existing applications can be integrated into a new
application and the tasks of rewriting code and maintaining software can be reduced.
 In OMG’s object model, an object is an encapsulated entity with a distinct immutable identity. Its services can
be accessed only through interfaces defined in IDL (ref. 2). Clients issue requests to objects to perform services on
their behalf, but the implementation and location of each object are hidden from the requesting client. Communica-
tion between clients and objects is provided by the Object Request Broker (ORB), a key component of the CORBA
architecture. Upon compiling an IDL file, the ORB generates the stub and the skeleton through which a client can
invoke a method on a server object, which can be on the same machine or across a network. The ORB is responsible
for finding an object that can implement the request, passing it the parameters, invoking its method, and returning
the results to the client. In this process, the client does not have to be aware of where the object is located, its pro-
gramming language, its operating system, or any other system aspects that are not part of an objects interface.
 Since its inception, CORBA has been widely accepted as the middleware standard for distributed object
computing. It relieves distributed application developers of the cumbersome task of dealing with issues due to het-
erogeneous computing environments, and it provides a standards-based interface to facilitate transparent exchange
of management information for computer and communication networks (refs. 3 and 4). TeleMed (ref. 5) is an effort
to demonstrate sharing multimedia electronic medical records over a wide area network. It was designed as a dis-
tributed object system in which the various healthcare components are dealt with as objects and distributed via
the CORBA standard. CORBA-based distributed object technology is considered the key to integrating legacy
applications in highly dynamic business environments (ref. 6). Industry-specific success stories about CORBA

NASA/TM—2000-209950 2

applications are reported in OMG’s web site (ref. 7). OMG’s Domain Technical Committee aims at developing
domain-specific CORBA services and technologies in various industries.
 Many scientific applications in aerodynamics and solid mechanics are written in Fortran. Refitting these legacy
Fortran codes with CORBA objects can increase the code reusability. For example, scientists could link their spec-
ific applications to objectified vintage Fortran programs such as Partial Differential Equation solvers, in a plug-and-
play fashion. Many standalone Fortran applications developed to analyze the performance of an individual compo-
nent of the engineering system can be converted to CORBA objects and then combined with other objects to design
the entire system. Reference 8 documents attempts to provide a collaborative design and simulation environment
based on this concept. A CORBA-based software environment is developed in reference 9. It couples two independ-
ently developed codes written in Fortran and C++ to model a thermomechanical problem. A computationally inten-
sive Fortran application also can be decomposed into several pieces, made into CORBA objects, and distributed
over several machines to speed up the computation. Unfortunately, CORBA-IDL-to-Fortran mapping has not been
proposed, and there seems to be no direct method of generating CORBA objects from Fortran without manually
writing C/C++ wrappers.
 In this paper, we present an efficient methodology to integrate applications written in Fortran into a distributed
object framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into CORBA
objects are discussed. Our goal was to keep the Fortran codes unmodified as much as possible. To reduce the pro-
gramming effort in code wrapping, we designed and implemented a conversion tool that takes the Fortran applica-
tion program as input and generates the C/C++ header file and IDL file. At the end of this paper, we evaluate the
performance of the client-server computing and identify possible communication overhead.

METHODOLOGY

 One method of wrapping a legacy application is to encapsulate the entire legacy code into a single object.
Programmers only need to provide a server that will invoke the wrapped legacy-code object when it receives a
request from a client. This straightforward method is suitable for small-scale applications that have only one module
or entity.
 For complicated applications, an alternative method that we are interested in is to decompose the codes into
different function modules and wrap each module into a distributed object. This method can increase the code usa-
bility because each distributed object can be invoked by a different application as a plug-and-play software compo-
nent. Figure 1 shows the conversion and decomposition mechanism we proposed. Our objective was to keep modifi-
cations of the Fortran source codes to a minimum. The conversion tool takes the Fortran application program as
input and helps programmers generate a C/C++ header file and an IDL file for wrapping the Fortran code.
 In our current environment, individual programmers need to determine how to decompose the legacy applica-
tion into several reusable components on the basis of the cohesion and coupling factors of the functions and sub-
routines. In the future, we plan to add an analyzer tool to help programmers extract objects from legacy codes.
Earlier studies in object extraction can be found in references 10 and 11. This topic is beyond the scope of this
paper.
 Most Fortran applications use the COMMON block to distribute a large number of variables among several
functions. COMMON blocks play a role similar to that of the global variables used in C. In the CORBA-compliant
programming environment, global variables cannot be used to pass values between objects. One approach to dealing
with such problem is to put the COMMON variables into the parameter list, but this requires extensive modification
of the Fortran source code, which violates our design considerations. Our approach is to extract the COMMON
blocks and convert them into a structure-type attribute in C++. Through the attributes, each component can initialize
the variables and return the computed result back to the client. With our conversion tool, the programming effort can
be greatly reduced because function headings, types, and even the COMMON blocks are converted to C++ and IDL
styles.

IMPLEMENTATION ISSUES

 The conversion tool we proposed in the previous section consists of a parser and a code generator. The parser
constructs parsing trees from the input Fortran codes, and the generator translates the trees into C++/IDL codes.
Instead of writing a language translator from the beginning, we implemented the conversion tool with an existing
Fortran-to-C converter called f2c (ref. 12). We chose the f2c package because it is an open-source program and has
been widely used in academic areas.

NASA/TM—2000-209950 3

 The f2c program translates Fortran 77 codes to C codes. Since our goal is to wrap the Fortran codes and provide
the interface for both the client and the server, we only need to use f2c to extract and translate the codes of data
types, variable declarations, and function headings. The function bodies and statements are of no interest to us.
However, the codes converted by f2c do not totally meet the IDL syntactic requirements. For example, IDL requires
a tag in the structure type, whereas C does not. Unfortunately, f2c translates a Fortran COMMON block into a struc-
ture variable in C without a tag. Furthermore, the structure tag can be used as a type to define structure variables in
IDL. In C, it has to put the keyword struct in front of the tag, and this kind of declaration is not allowed in IDL.
 The syntactic difference between the C and IDL data structure required some manual editing of the code gener-
ated from f2c in our work. This inconvenience motivated us to modify the f2c program by adding a few codes to
generate the tag for a structure. Figure 2 shows an example of Fortran codes with the declarations of the COMMON
blocks cgcon and disp. The corresponding codes in IDL, as translated by the modified f2c program (f2CORBA),
are shown in figure 3.
 Like the example shown in figure 2, most Fortran applications have several COMMON blocks. After decom-
posing the application into a few CORBA objects, the problem of passing the structure variables (i.e., COMMON
blocks) to several servers needs to be solved. Our current approach is to merge all the structures into another
structure (e.g., lu_tag in fig. 3) and use an attribute (e.g., lu_all in fig. 3) to facilitate data transfer.
 This approach is based on the assumption that each server needs to access all the COMMON blocks. However,
some servers may access only parts of them. A graphical user interface (GUI) to ease the conversion task has been
partially developed. Programmers will be able to simply click on an item to select a structure variable from a list box
to be a member in a structure-type attribute (see fig. 4). To implement the GUI interface, we are using the tool
Tcl/Tk (ref. 13) because of its availability and portability. Tcl/Tk can be downloaded from the World Wide Web
(ref. 14) and has been used on most operating system platforms, including UNIX, Windows NT (Microsoft Corp.),
and Macintosh (Apple Corp.). Furthermore, most programmers can learn the fundamentals of Tcl/Tk and write
script programs to do real work in a few days.
 We have successfully tested the proposed conversion methodology on different CORBA packages: VisiBroker
C++ (Inprise/Borland Corp., ref. 15) and MICO (ref. 16). Because of availability and portability, we prefer using
MICO rather than VisiBroker C++. For example, VisiBroker C++, a commerical software program, only works
with a Sparcworks C++ (Sun Microsystems) compiler on Sun Sparc or Ultra (Sun Microsystems) platforms. MICO,
a public-domain ORB with a complete CORBA compliant implementation, relies on the GNU package and, hence,
can be ported easily to almost any platform, including Solaris, LINUX, and Windows NT.

PERFORMANCE MEASUREMENTS

 To investigate the overhead produced in distributed object computing, we selected the LU and BT benchmarks
from the NAS Parallel Benchmarks (NPB) suite (ref. 17). These benchmarks, which were devised by the Numerical
Aerodynamics Simulation (NAS) program at the NASA Ames Research Center, have been used widely to study the
performance of parallel computing. For example, we used the benchmarks to evaluate the performance of a cluster
of 32 Intel P6 (Intel Corp.) workstations that were connected by a two-level tree-structure network (ref. 18). The
NPB 2.3 benchmarks are a set of eight problems consisting of five kernels that highlight specific areas of machine
performance and three pseudoapplications that simulate computational fluid dynamics (CFD). Brief descriptions of
the LU and BT benchmarks follow:

• Application LU solves a finite difference discretization of the three-dimensional compressible Navier-
Stokes equations by using a symmetric successive over-relaxation (SSOR) numerical scheme.

• Application BT is based on a Beam-Warming approximate factorization that decouples the x, y, and z
dimensions, resulting in three sets of narrow-banded, regularly structured systems of linear equations.

 We used the sample-size serial version of the LU and BT benchmarks (NPB2.3-serial) and decomposed each
benchmark into two server objects. The client needed to contact these two servers one after the other to accomplish
the task. The experiments were performed on a pair of Sun Ultra computers (170–MHz, 128–MB) running Solaris
2.6 (Sun Microsystems) and also on a pair of Intel P6 computers (400-MHz, 512-MB) running LINUX kernel
2.2.12. The clients and servers were connected through a 100BaseT local area network (LAN).
 Tables I and II show the breakdown of the elapsed time for running the benchmarks LU and BT, respectively.
For comparison, we also ran the original programs. The results show that the time for service binding is small.
However, the communication overhead, including the time for marshaling and unmarshaling data between the client
and the servers, cannot be ignored.

NASA/TM—2000-209950 4

CONCLUSION

 Many scientific applications in aerodynamics and solid mechanics are written in Fortran. Refitting these legacy
Fortran codes with Common Object Request Broker Architecture (CORBA) objects can increase the code reusabil-
ity. In this paper, we have presented a methodology to integrate Fortran legacy programs into a distributed object
framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into CORBA objects
have been discussed. We also have implemented a conversion tool that takes the Fortran application program as
input and generates the C/C++ header file and the Interface Definition Language (IDL) file. The tedious program-
ming tasks for wrapping the codes can, therefore, be reduced. In the future, we plan to add more user-friendly
graphical user interfaces and to provide an analyzer tool to help programmers easily extract objects from legacy
applications.

REFERENCES

1. Object Management Group: The Common Object Request Broker: Architecture and Specification, 2.3 edition,

June 1999.
2. Vinoski, S.: CORBA: Integrating Diverse Applications Within Distributed Heterogeneous Environments. IEEE

Commun., vol. 35, Feb. 1997, pp. 46–55.
3. Haggerty, P.; and Seetharaman, K.: The Benefits of CORBA-Based Network Management. Communications of

the ACM, vol. 41, Oct. 1998, pp. 73–79.
4. Pavon, J., et al.: CORBA for Network and Service Management in the TINA Framework. IEEE Commun.,

vol. 36, Mar. 1998, pp. 72–79.
5. Forslund, J., et al.: TeleMed: Development of a Java/CORBA-based Virtual Electronic Medical Record.

Proceedings of the PacMedTek Symposium, Aug. 1998.
6. Sun Microsystems, Inc.: Distributed Object Technology in the Financial Services Industry, White Paper, last

modified 1995. http://www.sun.com/software/solutions/third-party/software/whitepapers/ Accessed May 18,
2000.

7. OMG, last modified 2000. http://www.omg.org Accessed after June 1999.
8. Lytle. J.: The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace

Vehicles, NASA/TM—1999-209194, 1999. http://gltrs.grc.nasa.gov/cgi-bin/GLTRS/browse.pl?/1999/TM-
1999-209194.html (Also, Proceedings of the 14th International Symposium on Air Breathing Engines
sponsored by the International Society for Air Breathing Engines, Sep. 1999.)

9. Sandia National Lab (Summers, R.M.; Peery, J.S.; Hogan, R.E.; Holmes, V.P.; and Miller, D.J.): Coupling
Finite Element Codes Using CORBA-Based Environments, last modified Jan. 4, 1996.
http://www.cs.sandia.gov/HPCCIT/corba/impres.html Accessed May 18, 2000.

10. Achee, B.L.; and Carver, D.L.: Creating Object-Oriented Designs From Legacy Fortran Code. J. Syst. Software,
vol. 39, 1997, pp. 179–194.

11. Ong, C.; and Tsai, T.: Class and Object Extraction from Imperative Code. J. Object-Oriented Prog., Mar./Apr.
1993, pp. 58–68.

12. Feldman, S.I., et al.: A Fortran-to-C Converter. Technical Report No. 149, Bell Laboratories, NJ, 1995.
13. Ousterhout, J.: Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA, 1994.
14. Tcl/Tk 8.3.1 Download, last modified March 3, 2000. http://dev.scriptics.com/software/tcltk/download83.html

Accessed May 9, 2000.
15. Inprise, Corp.: VisiBroker for C++: Programmer’s Guide, Version 3.3, 1999.
16. RCmer, K.; Puder, A.; and Pilhofer, F.: MICO is CORBA, last modified Feb. 9, 1997. http://www.mico.org

Accessed May 18, 2000.
17. Bailey, D., et al.: The NAS Parallel Benchmarks 2.0. Technical report, NAS–95–020, NASA Ames Research

Center, 1995.
18. Sang, J., et al.: High-Performance Cluster Computing Over Gigabit/Fast Ethernet. Informatica, vol. 23, 1999.

NASA/TM—2000-209950 5

TABLE I.—BREAKDOWN OF ELAPSED TIME FOR RUNNING THE CLIENT-SERVER BENCHMARK LU
Elapsed time, sec

Traditional One client, two servers
Benchmark LU

Computation Total Binding Computation Communication Total
Sun Ultra 2.99 3.05 0.046 2.99 0.33 3.37
PC LINUX 1.51 1.58 .019 1.51 .19 1.72

TABLE II.—BREAKDOWN OF ELAPSED TIME FOR RUNNING THE CLIENT-SERVER BENCHMARK BT
Elapsed time, sec

Traditional One client, two servers
Benchmark BT

Computation Total Binding Computation Communication Total
Sun Ultra 6.99 7.25 0.047 6.99 2.12 9.16
PC LINUX 4.16 4.35 .019 4.16 1.38 5.73

func 1 func 3 func 4 func 5func 2

COMMON variables

Fortran application

func 1 func 3 func 4 func 5func 2

COMMON variables COMMON variables

C/C++ wrapper C/C++ wrapper
CORBA Object1 CORBA Object2

IDL
File

attribute attribute

f2CORBA
Conversion Tool

Figure 1.—Functional diagram of f2CORBA conversion tool. CORBA, Common
 Object Request Broker Architecture; IDL, Interface Definition Language.

NASA/TM—2000-209950 6

integer nx, ny, nz
 integer nx0, ny0, nz0
 ...
 double precision dxi, deta, dzeta
 double precision tx1, tx2, tx3
 double precision ty1, ty2, ty3
 ...
 common/cgcon/ dxi, deta, dzeta,
> tx1, tx2, tx3,
> ty1, ty2, ty3, ...
> nx, ny, nz,
> nx0, ny0, nz0,
 ...
 double precision dx1, dx2, dx3, dx4, dx5
 double precision dy1, dy2, dy3, dy4, dy5
 ...
 common/disp/ dx1, dx2, dx3, dx4, dx5,
> dy1, dy2, dy3, dy4, dy5,
 ...

 Figure 2.—Original Fortran codes with COMMON
 block variables.

struct cgcon_tag {
double dxi, deta, dzeta, tx1, tx2, tx3, ty1, ty2, ty3, ... ;
integer nx, ny, nz, nx0, ny0, nz0, ... ;

} ;
struct disp_tag {

double dx1, dx2, dx3, dx4, dx5, dy1, dy2, dy3, dy4, dy5, ... ;
} ;
...
struct lu_tag {

cgcon_tag cgcon_;
disp_tag disp_;

...
} ;
interface Lu1 {

attribute lu_tag lu_all;
void lu1_comp();

} ;
interface Lu2 {

attribute lu_tag lu_all;
void lu2_comp();

} ;

 Figure 3.—Converted codes in Interface Definition Language (IDL).

NASA/TM—2000-209950 7

Figure 4.—Graphical user interface for structure
 variable selection.

This publication is available from the NASA Center for AeroSpace Information, (301) 621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

WU–509–10–24–00

NASA TM—2000-209950
ARL–MR–488

July 2000

E–12204

13

A03

Developing CORBA-Based Distributed Scientific Applications
From Legacy Fortran Programs

Janche Sang, Chan Kim, and Isaac Lopez

CORBA; Fortran

Unclassified -Unlimited
Subject Categories: 01 and 61 Distribution: Nonstandard

Prepared for the Computational Aerosciences Workshop sponsored by the High Performance Computing and Communications Program,
Moffett Field, California, February 15–17, 2000. Janche Sang, Cleveland State University, Department of Computer and Information
Science, Cleveland, Ohio 44115; Chan Kim, NASA Glenn Research Center; and Isaac Lopez, U.S. Army Research Laboratory, Glenn
Research Center, Cleveland, Ohio 44135. Responsible person, Isaac Lopez, organization code 2900, (216) 433–5893.

U.S. Army Research Laboratory
Cleveland, Ohio 44135–3191
and
NASA Glenn Research Center
Cleveland, Ohio 44135–3191

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

An efficient methodology is presented for integrating legacy applications written in Fortran into a distributed object
framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into Common Object
Request Broker Architecture (COBRA) objects are discussed. Fortran codes are modified as little as possible as they
are decomposed into modules and wrapped as objects. A new conversion tool takes the Fortran application as input and
generates the C/C++ header file and Interface Definition Language (IDL) file. In addition, the performance of the client
server computing is evaluated.

